Part Number Hot Search : 
ADF4360 0515D 07197 SA1469TN C1446 MC100EP HVU367 15KP100A
Product Description
Full Text Search
 

To Download FQH140N10 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FQH140N10
QFET
FQH140N10
100V N-Channel MOSFET
General Description
These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for low voltage applications such as audio amplifier, high efficiency switching DC/DC converters, and DC motor control.
TM
Features
* * * * * * * 140A, 100V, RDS(on) = 0.01 @VGS = 10 V Low gate charge ( typical 220 nC) Low Crss ( typical 470 pF) Fast switching 100% avalanche tested Improved dv/dt capability 175C maximum junction temperature rating
D
!
"
G! GD S
!"
" "
TO-247
FQH Series
!
S
Absolute Maximum Ratings
Symbol VDSS ID IDM VGSS EAS IAR EAR dv/dt PD TJ, TSTG TL
TC = 25C unless otherwise noted
Parameter Drain-Source Voltage - Continuous (TC = 25C) Drain Current - Continuous (TC = 100C) Drain Current - Pulsed
(Note 1)
FQA140N10 100 140 99 560 25
(Note 2) (Note 1) (Note 1) (Note 3)
Units V A A A V mJ A mJ V/ns W W/C C C
Gate-Source Voltage Single Pulsed Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Power Dissipation (TC = 25C)
1500 140 37.5 6.5 375 2.5 -55 to +175 300
- Derate above 25C Operating and Storage Temperature Range Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds
Thermal Characteristics
Symbol RJC RCS RJA Parameter Thermal Resistance, Junction-to-Case Thermal Resistance, Case-to-Sink Thermal Resistance, Junction-to-Ambient Typ -0.24 -Max 0.4 -40 Units C/W C/W C/W
(c)2003 Fairchild Semiconductor Corporation
Rev. A, August 2003
FQH140N10
Electrical Characteristics
Symbol Parameter
TC = 25C unless otherwise noted
Test Conditions
Min
Typ
Max
Units
Off Characteristics
BVDSS BVDSS / TJ IDSS IGSSF IGSSR Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage Current, Forward Gate-Body Leakage Current, Reverse VGS = 0 V, ID = 250 A ID = 250 A, Referenced to 25C VDS = 80 V, VGS = 0 V VDS = 64 V, TC = 150C VGS = 25 V, VDS = 0 V VGS = -25 V, VDS = 0 V 100 ------0.08 ------1 10 100 -100 V V/C A A nA nA
On Characteristics
VGS(th) RDS(on) gFS Gate Threshold Voltage Static Drain-Source On-Resistance Forward Transconductance VDS = VGS, ID = 250 A VGS = 10 V, ID = 70 A VDS = 30 V, ID = 70 A
(Note 4)
2.0 ---
-0.008 80
4.0 0.01 --
V S
Dynamic Characteristics
Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance VDS = 25 V, VGS = 0 V, f = 1.0 MHz ---6100 2000 420 7900 2600 550 pF pF pF
Switching Characteristics
td(on) tr td(off) tf Qg Qgs Qgd Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge VDS = 64 V, ID = 140 A, VGS = 10 V
(Note 4, 5)
VDD = 40 V, ID = 140 A, RG = 25
(Note 4, 5)
--------
75 940 350 360 220 39 114
160 1890 710 730 285 ---
ns ns ns ns nC nC nC
Drain-Source Diode Characteristics and Maximum Ratings
IS ISM VSD trr Qrr Maximum Continuous Drain-Source Diode Forward Current Maximum Pulsed Drain-Source Diode Forward Current VGS = 0 V, IS = 140 A Drain-Source Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge VGS = 0 V, IS = 140 A, dIF / dt = 100 A/s
(Note 4)
------
---140 730
140 560 1.5 ---
A A V ns nC
Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 0.115mH, IAS = 140A, VDD = 25V, RG = 25 , Starting TJ = 25C 3. ISD 140A, di/dt 300A/s, VDD BVDSS, Starting TJ = 25C 4. Pulse Test : Pulse width 300s, Duty cycle 2% 5. Essentially independent of operating temperature 6. Continuous Drain Current Calculated by Maximum Junction Temperature : Limited by Package
(c)2003 Fairchild Semiconductor Corporation
Rev. A, August 2003
FQH140N10
Typical Characteristics
ID, Drain Current [A]
10
2
ID , Drain Current [A]
VGS 15.0 V 10.0 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom : 4.5 V Top :
10
2
10
1
175
25 10
0
-55
Notes : 1. VDS = 40V 2. 250 s Pulse Test
10
1
Notes : 1. 250 s Pulse Test 2. TC = 25
-1
10
10
0
10
1
10
-1
2
4
6
8
10
VDS, Drain-Source Voltage [V]
VGS , Gate-Source Voltage [V]
Figure 1. On-Region Characteristics
Figure 2. Transfer Characteristics
30
IDR , Reverse Drain Current [A]
25
RDS(ON) [m ], Drain-Source On-Resistance
10
2
20
VGS = 10V VGS = 20V
15
10
1
10
10
0
5
Note : TJ = 25
175
25
Notes : 1. VGS = 0V 2. 250 s Pulse Test
0 0 100 200 300 400 500 600 700 800 900
10
-1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
ID , Drain Current [A]
VSD , Source-Drain Voltage [V]
Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage
Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature
20000 18000 16000 14000
Ciss = Cgs + Cgd (Cds = shorted) Coss = Cds + Cgd Crss = Cgd
12
Coss Ciss
10
VDS = 50V VDS = 80V
VGS, Gate-Source Voltage [V]
8
Capacitance [pF]
12000 10000 8000 6000 4000 2000 0 -1 10
Notes : 1. VGS = 0 V 2. f = 1 MHz
6
Crss
4
2
Note : ID = 140 A
0 10
0
10
1
0
40
80
120
160
200
240
VDS, Drain-Source Voltage [V]
QG, Total Gate Charge [nC]
Figure 5. Capacitance Characteristics
Figure 6. Gate Charge Characteristics
(c)2003 Fairchild Semiconductor Corporation
Rev. A, August 2003
FQH140N10
Typical Characteristics
(Continued)
1.2
2.5
BV DSS , (Normalized) Drain-Source Breakdown Voltage
2.0
RDS(ON) , (Normalized) Drain-Source On-Resistance
1.1
1.5
1.0
1.0
0.9
Notes : 1. VGS = 0 V 2. ID = 250 A
0.5
Notes : 1. VGS = 10 V 2. ID = 70 A
0.8 -100
-50
0
50
100
o
150
200
0.0 -100
-50
0
50
100
o
150
200
TJ, Junction Temperature [ C]
TJ, Junction Temperature [ C]
Figure 7. Breakdown Voltage Variation vs. Temperature
Figure 8. On-Resistance Variation vs. Temperature
150
Operation in This Area is Limited by R DS(on)
10
3
120
10 s
10
2
1 ms 10 ms DC
ID, Drain Current [A]
ID, Drain Current [A]
100 s
90
10
1
Limited by Package
60
10
0
Notes : 1. TC = 25 C 2. TJ = 175 C 3. Single Pulse
o o
30
10
-1
10
0
10
1
10
2
0 25
50
75
100
125
150
175
VDS, Drain-Source Voltage [V]
TC, Case Temperature []
Figure 9. Maximum Safe Operating Area
Figure 10. Maximum Drain Current vs. Case Temperature
( t) , T h e r m a l R e s p o n s e
D = 0 .5
10
-1
0 .2 0 .1 0 .0 5 0 .0 2
N o te s : 1 . Z J C ( t) = 0 .4 /W M a x . 2 . D u ty F a c to r , D = t 1 /t 2 3 . T J M - T C = P D M * Z J C ( t)
PDM t1
s i n g l e p u ls e
JC
10
-2
0 .0 1
t2
Z
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
10
1
t 1 , S q u a r e W a v e P u ls e D u r a t io n [ s e c ]
Figure 11. Transient Thermal Response Curve
(c)2003 Fairchild Semiconductor Corporation
Rev. A, August 2003
FQH140N10
Gate Charge Test Circuit & Waveform
50K 12V 200nF 300nF
Same Type as DUT VDS
VGS Qg 10V Qgs Qgd
VGS
DUT
3mA
Charge
Resistive Switching Test Circuit & Waveforms
VDS VGS RG
RL VDD
VDS
90%
10V
DUT
VGS
10%
td(on) t on
tr
td(off) t off
tf
Unclamped Inductive Switching Test Circuit & Waveforms
L VDS ID RG DUT
tp
BVDSS 1 EAS = ---- L IAS2 -------------------2 BVDSS - VDD BVDSS IAS VDD VDD
tp
ID (t) VDS (t) Time
10V
(c)2003 Fairchild Semiconductor Corporation
Rev. A, August 2003
FQH140N10
Peak Diode Recovery dv/dt Test Circuit & Waveforms
DUT
+ VDS _
I SD L Driver RG
Same Type as DUT
VDD
VGS
* dv/dt controlled by RG * ISD controlled by pulse period
VGS ( Driver )
Gate Pulse Width D = -------------------------Gate Pulse Period
10V
IFM , Body Diode Forward Current
I SD ( DUT ) IRM
di/dt
Body Diode Reverse Current
VDS ( DUT )
Body Diode Recovery dv/dt
VSD
VDD
Body Diode Forward Voltage Drop
(c)2003 Fairchild Semiconductor Corporation
Rev. A, August 2003
FQH140N10
Package Dimensions
TO-247AD (FKS PKG CODE 001)
Dimensions in Millimeters
(c)2003 Fairchild Semiconductor Corporation Rev. A, August 2003
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACExTM FACT Quiet SeriesTM ActiveArrayTM FAST BottomlessTM FASTrTM CoolFETTM FRFETTM CROSSVOLTTM GlobalOptoisolatorTM DOMETM GTOTM EcoSPARKTM HiSeCTM E2CMOSTM I2CTM TM EnSigna ImpliedDisconnectTM FACTTM ISOPLANARTM Across the board. Around the world.TM The Power FranchiseTM Programmable Active DroopTM
DISCLAIMER
LittleFETTM MICROCOUPLERTM MicroFETTM MicroPakTM MICROWIRETM MSXTM MSXProTM OCXTM OCXProTM OPTOLOGIC OPTOPLANARTM PACMANTM POPTM
Power247TM PowerTrench QFET QSTM QT OptoelectronicsTM Quiet SeriesTM RapidConfigureTM RapidConnectTM SILENT SWITCHER SMART STARTTM SPMTM StealthTM SuperSOTTM-3
SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TinyLogic TINYOPTOTM TruTranslationTM UHCTM UltraFET VCXTM
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component is any component of a life 1. Life support devices or systems are devices or support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Preliminary
First Production
No Identification Needed
Full Production
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. I5


▲Up To Search▲   

 
Price & Availability of FQH140N10

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X